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ABSTRACT

Several solution concepts have been defined for abstract

games. Some of these are the core due to Gillies [3] and Shapley ,

the von Neumann—Morgenstern stable sets due to von Neumann and

Morgenstern [15], and the subsolutions due to Roth [11]. These

solutions concepts are rather static in nature. In this paper,

we propose a new solution concept for abstract games called the

dynamic solution that reflects the dynamic aspects of negotiation

• among the players . Some properties of the dynamic solution are

studied. Also, the dynamic solution of abstract games arising

from n-person cooperative games in characteristic function form

is investigated .
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SIGNIFICANCE AND EXPLANATION

Abstract games are abstractions of games that arise in game

theory , social choice theory , economic market theory, coalition

theory, theory of legislatures and committees and various other

situations that can be modeled as a game.

A fundamental prob lem arising here is to predict the outcome (s)

which will result if the game is played by rational players. These

predictions are called solutions of the abstract game. Several

solution concepts have been defined for abstract games . However,

these are somewhat static in nature and do not indicate the dynamics

of negotiations or the mechanism by which the outcomes in the solu-

tion are realized . In this paper, we propose and study a new solu-

tion concept cal led the dynamic solution, that reflects the dynamic

aspects of bargaining among the players. The dynamic solution is

• based on the elementary theory of Markov chains.

Static solution concepts tend to be normative, i.e., given

certain assumptions, they tell people how to behave to attain

certain ends. The dynamic solution concept tends to be descriptive ,

i.e., given certain assumptions, it predicts how people will behave.

This is illustrated by several examples.

The responsibility for the wording and views expressed in this
descriptive summary lies with MRC , and not with the author of
this report.
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A DYNAMIC SOLUTION CONCEPT FOR ABSTRACT GAMES

Prakash P. Shenoy

• 1. Introduction.

Several solution concepts have been defined for abstract games.

Some of these are the core due to Gillies (3] and Shapley , the

von Neurnann—Morgenstern stable sets due to von Neumann and

Morgenstern [15], and the subsolutions due to Roth [11). These -
•

solution concepts are rather static in nature. They do not indi-

cate the dynamics of negotiation or the mechanism by wh ich the

outcomes in the solution are realized in practice. They can be

considered as (conditionally) normative or prescriptive theories .

In this paper, we propose a new solution concept for abstract gaines,

• 
called the dynamic solution , that reflects the dynamic aspects

of bargaining among the players. It is based on the elementary

theory of Markov chains.

Section 2 contains some notation and definitions . We intro-

duce two additional binary relations which are derived from the

binary relation , domination , of the abstract game. In Section 3,

the concepts of an elementary dynamic so lution and the dynamic

solution are introduced and discussed . The properties of the

dynamic solution are studied in Section 4. For an abstract game

with a finite number of outcomes , the concept of the dynamic solu-

tion coincides with the concept of the R-admissible set defined

by Kalai , Pazner and Schmeidler [4].~ In Section 5, the dynamic

solution of all abstract games arising from 3-person cooperative

Kalai and Schmeidler [5] have also defined a solution concept sim-
ilar to the dynamic solution for infinite outcomes abstract games.
Howeve r , the research presented here was done independently of both
these references .
Sponsored by the United States Army under Contract No. DAAG29-75-C-
0024, and the National Science Fonndation under Grant No. MCS75-
17385 AOl.
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games with side payments in characteristic function form are

determined . Finally , in Section 6, many games, which have patho-

logical behaviour in the classical von Neumann—Morgenstern (vN—M)

theory of stable sets , are shown to be amenable to our approach .

2. Notation and Definitions

An abstract game is a pair (X, dom) where X is an arbitrary

set whose members are called outcomes of the game, and dom is

an arbitrary binary relation defined on X and is called domina-

tion. An outcome x € X is said to be accessible from an outcome

y € X, denoted by x ÷ y (or y -* x ) ,  if there exists outcomes

Z
0 

= X jp Z
1

1 Z 2 , . . . , Z 1 Z =y , where in is a positive integer , such

that

(1) x = z 0 dom z~ dom z 2 dom . .. dam Zm l  dom Z m y .

Also assume x ÷ X , i.e. an outcome is accessible from itself.

Clearly , the binary relation accessible is transitive and reflexive .

An interpretation of the relation accessible is as follows:

If the players are considering an outcome y at some stage, then

an outcome they will consider next will be a z c X such that

z dom y. If x ÷ y and if the p layers are considering outcome

y at some time , then it is possible that they will consider out-

come x at some future time. I.e. one may interpret the relation

as a possible succession of transitions from one outcome to another.

Two outcomes x and y which are access ible to each other

are said to communicate and we write this as x ~~~ y. Since the

relation accessible is transitive and reflexive it follows that

Proposition 1. Communication is an equivalence relation .

—2—
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We can now partition the set X into equivalence classes.

Two outcomes are in the same equivalence class if they communicate

with each other. We say that the abstract game is irreducible if

this equivalence relation induces only one class. The set

(2) Dom(x) = f y  E X: x dom y}

is called the dominion of x . Similarly we define the dominion

of any subset A c x by

(3)  Dom(A) = u Dom(x)
x€A

and let

( 4 )  Domk (A) = Dom ( Domk~~~(A) ) for k > 2

where Dom1(A) = DOm (A)

Also define the inverse dominion of x by

( 5)  Dom~~~(x) = {y X:y dom

• The core C (due to Gillies [3] and Shapley) of an abstract game

• is defined to be the set of undominated outcomes. I.e.

( 6 )  C = X - Dom (X)

We can rewrite the definition of the core in terms of the relation

accessible as follows:

(7 )  C = {x ~ X: For all y € X, y ~ x,  we have y ~ x } ,

i.e., in the terminology of Markov chains , the core is the set of

all absorbing outcomes. Note that each outcome in the core (if non-

empty) is an equivalence clas s by itself.

A vN-M stable set V (due to von Neumann and Morgenstern [15])

of an abstract game is any V c X such that

( 8 )  V = X - Dom(V)

—3—
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- - Any vN—M stable set V satisfies internal  s tabi l i ty  and external

stability ,  i.e.,

(9) V ii Dom(V) = 0 and V u Dom (V) = X

In recen t years , Behzad and Harary [1,2) and Shinadich [13] have

characterized finite abstract games for which vN-M stable sets

exist .

• 3. The Dynamic Solution.

• We define an elementary dynamic solution (elem. d-solution)

of the abstract game (X,dom) as a set S c ~ such that

(10) if x E S~ y E X-S , then y ~ x and

• (11) if x,y € S, then x ÷ y and y ÷ x

Condition (10) requires S to be ‘externally stable ’ in a dynam ic

sense, i.e. if the players are considering x E S at some time,

then they will never consider any outcome that is not in S in

the future. We can think of Condition (11) as ‘internal stability ’

in a dynamic sense. I.e., if the pl ayers make a transition (in the

consideration of outcomes) from x to y then it is possible that

the players will again consider the outcome x in the future.

Proposition 2. An elem. d—solution S is an equivalence class.

Proof: By Condition (11), S is contained in an equivalence class

H, i.e. S ~ H. Suppose S ~ H. Let x ~ H-S and y E S. Then

x ÷ y since H is an equivalence class , which contradicts (10). 0

The converse , however, is not always true, i.e., an equivalence

class need not be an elem . d-solution. Condition (10) requires S

to be (in the terminology of Markov chains) a non-transient (re-

current, persistent) equivalence class.

—4— 
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Proposition 3. Each outcome in the core C of the game is an

elem. d-solution.

The proof follows from the definition of the core in (7).

The dynamic solution (d-solution) P of the game is the

union of all distinct elementary dynamic solutions. I.e.

(12) P = u{ScX: S is an elem. d—solution.}

We can interpret P as the set of all likely outcomes of

the game.

Proposition 4. For any abstract game, the dynamic solution always

exists and is unique. However, it may be empty .

Proof: Existence follows from the fact that the empty set 0
is always an elem. cl—solution. Uniqueness is clear from Pr~posi—

tion 2 and the definition of the d-solution . 0

Proposition 5. C c P

The proof follows from Proposition 3 and the definition of P

4. Properties of the Dynamic Solution

If x is a finite set, then our definition of the d-solution

coincides with the definition of the R-admissible set due to

Kalai, Pazner and Schmeidler (4). In this section we demonstrate

the equivalence of the two definitions. This will also illustrate

some of the properties of the d-solutiori.

Lemma 6. If X is a f ini te  set , then P is the d-solution if

d only if P satisfies:

( 13) For all x ,y e P , y -~~ x x .

( 14) If x c P, y c X-P, then y~~’ x. And

(15) if y c X-P , then 2 x  E P such that x ~- y

—5—
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Proof: (Necessity): It is clear from the definition of P that

it satisfies Conditions (13) and (14). Suppose Condition (15)

does not hold. Then for some y1 c X-P , x 1 y1 for all x E P.

Let A1(y1) c X—P be the equivalence class containing y1. If

A1(y1) satisfies Condition (10), then A1(y1) is an elem. d—

solution which is a contradiction. If not, then ay 2 e X-P-A1(y1
)

such that y2 ÷ x for some x c A1(y1). Let A2(y2) 
c X - (P u

A1(y1)) be the equivalence class containing y2. Repeating this

argument, since X is finite, we get an equivalence class
k-l

Ak (y k ) c x - P - LI A~ (y~ ) satisfying Condition (10). Hence
i=l

A~ (y~ ) is an elem. d-solution, which is a contradiction!

(Sufficiency) : Statements (13) and (14) imply that P is a

union of elem. d—solutions. Suppose some eleni. d-solution S is

not included in P, and let y € S c X-P. Then from Condition (15)

2 x E P such that x ÷ y. But x j S contradicts the fact that

S is an elem . d—solution! Hence P is the union of all elem.

d-solutions. 0

Theorem 7 If X is a finite set, then the cl-solution is non-

empty and unique .

Proof: Nonemptiness follows from Condition (15) of Lemma 6.

Uniqueness follows from Proposition 4. 0

Remark: If R is an arbitrary binary relation defined on X,

Kalai , Pazner and Schmeidler define an R-admissible set as a sub-

set of X satisfying Conditions (13), (14) and (15) with the binary

relation R substituted in place of ÷ . •

Define a binary relation transitive-domination denoted by

t—dom as follows:

—6—
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(16) For all x ,y E X , x t-dom y x ÷ y and y I x •

Transitive domination is asymmetric and transitive . The following

• lemma is proved in ~calai , Pazne r and Schmeidler [4) .

Lemma 8. If X is a finite set, the cl—solution P satisfies:

(17) For all x,y € P, x t7~dom y and y t7’dom x (internal

stability).

(18) For all y c X-P , 2 x  € P such that x t-dom y

(external stability) .

I.e. P is the unique vN-M stable set and the core of the ab-

stract game (X,t-dom).

The following results are easy consequences of the def in ition of

the cl-solution. Nevertheless , they are useful in computing the

d— solution .

Proposition 9. If x ,y € X such that x ÷ y and y I x , then

y / P .

Proof: If x € P, then y € P contradicts Condition (13). If

x / P , then y € P contradicts Condition (14). Note that Condi-

tions (13) and (14) hold for inf ini te  abstract games also . III .

Corollary 10. Let y be an outcome that is not in the core .

Then Dom (y) = 0 ~ y / P -

Proposition 11. x / P Dom
k(x) n P = 0 for all integers k > 1.

Proof: y € Domk (x) ~ y ÷ x for x j  P ~ y / P - 0

Proposition 12. If the core C is the unique vN-M solution , then

P = C.

Proof: From Proposition 5 , C c P. Since C is the unique

vN-M stable set , y € X-C ~ ~ x € C such that x ÷ y. But y I x

(since x € C ) .  Hence y / P (by Proposition 9) - 0

—7—
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Corollary 13. Let C be nonempty . If y € Domk(C) for some

integer k > 1 then y / P. I.e. P c x - U Dom~ (C) for
j=l

every integer m > 1.

5. Dynamic Solutions of 3—Person Games

A cooperative n-person g~~e with side payments in character-

istic function form is a pair (N,v) where N = {l ,2,. - . ,n} de—
notes the set of players and v is a non-negative real valued

function defined on the subsets of N which satisfies v(~~) 
= 0

and v({i}) = 0 for all i € N. The subsets of N are called

coalitions. A coalition structure (c.s.) p = {P~ ,. ~P~ } is a

partition of N into disjoint (nonempty) coalitions. The set of

(payoff) outcomes corresponding to coalition structure p is

denoted by x(P), where

(19 ) X ( p)  = {x € E~ : x~ > 0 for all I € N and

~ x.  = v ( P . )  for each P .  € p }

i E P •  J J
3

The elements of the set X({N}) are referred to as imputations .

Domination is defined as follows :

x € X(p) is said to dominate y c X(P) via coalition

R, denoted by x dom~y if x1 > for all i € R —

and ~ x. < v(R)
i€R

x dominates y , denoted by x doni y if ~ a non-

empty R c N such that x domR ~~~~

In the abstract game (X(p) ,dom) as defined above, we cannot

have domination via N and via one player coalitions. Also , if

x 1 = 0, then x does not dominate any other outcome via coalitions

that contain player i . Hen:: we have the following result.

-5-5 -~~~~~~~~ -• - - S 5~5~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • - • . • .  
—
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Lemma 14. Let r be a 3—person game and p be a c.s. that

contains only one-player or two-player coalitions . Then the

dynamic solution of the game (X(p),dom) is the entire se t of

outcomes, i.e. P(p) = X ( P ) .

So we need concern ourselves with only the c.s. ~ = (N).

Let P({N})and c({N}) denote the dynamic solution and the core of

the abstract game (X((N}) ,dom). To condense notation we will

denote P({N}) and C({N}) by P(N) and C(N) respectively.

Assume without loss of generality that the characteristic function

satisfies

v({l,2}) < v({l,3}) < v ’{2,3)).

Let v({1,2}) = a, v({l,3}) = b, v({2,3}) = c and v({l,2,3}) = d.

The following inclusive cases should be distinguished :

Case 1) d > (a+b+c)/2 , d > c

In this case the core C(N) � 0 and is given by

C(N) = {x € E3:x. > 0 for all i e N, x1 + x2 > a,

x1 ÷ x3 > b, x2 + x3 > c and x1 
+ x2 

+ x3 
= dl.

The d-solution is given by P(N) = C(N). (See Figure 1.)

Case 2) d < (a+b+c)/2, d > c

In this case C(N) = ~~~~. The d-solution is given by

P(N) = Conv{w1,w2,w3} 
- fw1,w2,w3} wher e

w1 
= (a+b-d , cl-b, d—a) ,

w2 = (cl—c , a+c—d , d-a),

w3 
= (d-c, d-b, b+c-d)

and Conv{a11...~ a~ } denotes the convex hull of the points in

(See Figure 2.)

—9—
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Case 3) a < b < d < c , d > a +b.

In this case the core C(N) ~ 0 and is given by

C(N) = Conv{(O ,a,d-a), (0,d—b ,b)}

and the d-solution is given by P(N) = C ( N ) . (See Figure 3 . )

Case 4) a < b < d < c , d < a + b .

In this case , C ( N )  = fI. The cl-solution is given by

P ( N )  = Conv{(a+b-d , d-b , cl-a) , ( 0 , a , d-a ) ,  (0 , cl-b, b ) }

— 
— { (a+b—d , d—b , d— a ) ,  (0 , a , d— a ) ,  (0 , d—b , b ) }

(See Figure 4.)

Case S) a < d < b < c .

In this case C(N) = 0 . The cl-solution is given by

P(N) = Conv{(a , 0 , d—a) , ( 0 , a , d— a ) ,  (0 , 0 , d ) }

— ((a, 0, d—a) , (0, a, cl—a), (0, 0, d) I

(See Figure 5.)

- • Case 6) d < a < b < c

In this case C (N )  = . The cl-solution is given by

P(N) = Conv{ (d , 0 , 0 ) ,  (0 , d , 0 ) ,  (0 , 0 , d ) }

— { (d, 0, 0), (0, d, 0), (0, 0, d) I

(See Figure 6.)

Thus all cases have been considered .

_ _ _ _ _  _
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(0d ,o)
A

-~1. / ~~~~~~~~~~~~~~

~~~ “ /

— 
,~~~~~

C

• i i l i l i i ii

(o ,o ,d) (d ,o ,o)

Figure 1. The dynamic solution P(N)  of a 3-person game , Case 1.)

The shaded region represents the inverse dominion of the point
-

- 
and the unshaded region(s) (containiri a the arrow) represent the
dominion of the point . The arrows indicate the direction of
transitions -

C,

(0,d,0)

A/
I A

“ I I~~ç4)

(d-c , a+c-d , d-a) • \
~~~~ _ _ _ _ _ _

f r + ,
i _ _ -  

-
(d-c , d-b , b+ -d) 

~~~~~ 
:z.~. + ~~ b

— — 
1 3

I 1 1 ) 1 1 1  t I L I %  % I I t I ’ %  II

(0~0,d)/ (a+b-d , d-b , d-a 
(d,0,O)

Figure 2. The dynamic solution P(N) of a 3-person game, Case 2).
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Figure 3. The dynamic solution P (N ) of a 3-person game , Case 3).
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(0,O,d) (d,0,0)

F~gure4. The dynamic solution P(N) of a 3-person game, Case ‘i ) .
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1 A (0,d ,O)
+
~/ /\

,•) 
~~I I ~

(0, a, d-a)

~~~~~~~~~
//4~N!~ \N\

X

1 
+f

~ 
b ‘

~~~~

- - -—-— -

~~~ 
(d,0,0)

(U,U,cl)

~~~~~~ 0, d-a )

Figure 5. The dynamic solution P(N) of a 3-person game , Case 5).

C, 
~
.

‘I

•1~
~ 0,d O  ~-‘A “

/
/

I ~k /

,I
,
/ 

~~~~~ ~~~~

— ~‘,,i// .,,., .1i 5J1

(O,0,d) x1 + x3 = b 
( ,O,O)

~4gure 6. The dynamic solution P(N) of a 3-person game, Case 6).
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6. Some Examples

In this section we study several examples which are patho-

logical in their behaviour with respect to the classical vN-M

theory of stable sets.

Example 1. (A 5—person game with a unique vN-M stable set strictly

larger than the core. See Lucas [6].)

Consider the 5—person game given by~

v(12345) = 2, v(12) = v(34) = v(135) = v(245) = 1

v(R) = 0 otherwise.

The core C = Conv{(1 , O ,O ,l , O ) ,  ( 0 , 1, 1, 0 ,0 ) 1  and the unique vN—M

solution is given by

V =  Conv(( 1, O ,0 , l ,O ) ,  (1,0 ,1, 0 ,0 ) ,  (0 , 1,1,0 ,0 ) ,  (0 ,1,0 , 1,0 ) 1 .

The d-solution coincides with the core. This is seen as follows.

We have Dom (C) = X - V and V - C c Doin(X-V). Hence C = X -
2
LI Dom3 (C) . By Corollary 10 , it follows that P = C
j=1

Example 2. (A 5-person game with a unique stable set which is

non-convex. See Lucas [7]).

Consider the 5-person game given by

v(l2345) = 3, v(234) = v(345) = 2,

v(12) = v(45) = v(35) = v(34) = 1, v(R) = 0 otherwise.

For this game

X = {x e : ~ = 3, x1 > 0 for all i € NI.
i€ N

Let

B = {x € X : ~ x1 
> v(R) for all R c N except {2,3,4}}.

i€R

tTo condense notation we shorten expressions like v({1 ,2 , 3, 4 ,5 }) —

to v(12345) .

- - _ _ _ _
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Then the core C of the game is g iven by

C = {x € B : x2 
+ x3 + x4 

> 21.

It can be easily shown that Dom(C) X - B and B - C Dom (X-B).

Hence by Corollary 10 , we have P = C

Example 3. (A game with no symmetric stable set. See Lucas [7].)

Let N = (l , . . . , 8} , v (N) = 4, v(1357) = 3, v(257) = v(457) = 1,

v(l2) = v ( 3 4 )  = v ( 5 6 )  = v(78) = 1, v (R) = 0 for all other R c N.

For this game,

x = {x € E8: ~ x. = 4, and x1 > 0 for all i € NI.
ieN

Let

H = {x € X: x1 + x2 
= x3 + x4 

= x5 + x6 
= x7 + x8 1).

• Then the core C of the game is given by

C = {x € H: x1 + x3 + x5 + x7 > 31.

Define F1 = {x € H: x~ = 1) for i = 1,3,5,7, and

F F 1 u F 3 u F 5 u F 7 - C

It is shown in Lucas [7] that Dom(C) = (X—H) u (H - (C u F)).

It is also clear that (H-C) c Dom (X—H). Hence C = X -

( Dom~iC) u Dom2 ( C ) ) .  By Corollary 13 it follows that P = C .

Example 4. (A game with no vN—M stable set. See Lucas [8 ,9 1. )

Lucas [81 constructs a ten-person game in which the set of umputa-

tions can be partitioned into regions as follows:

X = (X-B) U (B - (C u E u F)) u (C u E U F)

where C is the nonempty core. The domination relations is such

• :- that

(20) Dom(C) ~ (X—B) u (B — (C u E u F)),

(2 1) F n D o m ( C u E u F ) = 0 ,

(22) B c Dom(X—B)
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By Corollary 13 and Relation (20), P c (C U E U F), Relation (21)

~ F c Dom({X-B} ii (B - (C U E U F)}) F n P = ~ using Corollary

13 and Relation (2 2 )  ~ E n P = 0 by Corollary 13. Hence P = C.

Example 5. (An 8-person game with a unique stable set that is non

convex. See Lucas [10]).

Let N = (1,. ..,8}, v(N) = 4, v(l467) = 2, v(l2) = v(34) = v(56) =

v(78 = 1, v(R) = 0 for all other R c N. For this game it can be

shown as in Example 3 that P C -

A game without side payments is a triple (N,v,X) where

N = {l,...,n} is a set of n players , v is a “ generalized

characteristic function ” and X is the set of imputations .. A

generalized characteristic function v maps nonempty subsets of

N into subsets of n-dimensional space E~~, where the subset v (R )

assigned to coalition R consists of all vectors x such that R

can guarantee all of its members at least their share in X . We

assume that v satisfies the following axioms for any noneinpty

R c N .

(23) v(R) is closed , nonempty and convex .

(2 4 )  If x € v(R) and y
~ 

< x1 for all i € R then

y € v(R)

( 25 ) v (R 1) n v ( R 2 ) c v(R1 
U R2) whenever R1 rt R2 = 0.

(26) x € v(N) x
~ 

< y~ for some y € X and for all i € N .

Example 6. (A 7-person non side payment game with no vN—M stable

sets. See Stearns [141.)

Let N = {l,...,7} and X be the convex hul l of the five impu-

tat ions

— 16—
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(1,1,2,0,0,0,0) c =  (2,0,2,0,2,0,1)

p2 
= (0 , 0 ,1,1,2 , 0 , 0) o = (0 , 0 , 0 ,0 , 0 , 0 , 0)

• • p 3 
= (2 ,0 ,0 , 0 ,1,1,0 ) .

Let the “minimal winning” coalitions be

(135) , (127) , (347), (567)

Note that a coalition is winning if it contains a minimal winning
N 7coalition as a subset. Define v: 2 - 0 ÷ E by

€ E7: x1 < y1 for all i € R and for some y € X

J when R is winning
v(R) =

{x c E 7 : x1 < y .  for all i € R and for a].]. y € X

when R is non-winning .

The core of this game is the single imputation c. The cl-solution

is P = C. This is seen as follows .

• Dom(c) = X - (L1 U L2 u L3) where L~ = [c ,p’]

the closed line segment joining c and p1 for i = 1,2,3. Let

x € L~ — c, i.e., x = (A+l , l—~ , 2, 0, 2 , 0, A) for some

0 < A  < 1 .  Let

y 1 
= (2 , 0 , 2x 1’- , 0, A 1+l , 1—A ’, A 1) where A < A 1 < 1,

y2 
= (2A 2, 0 A 2+l A 2 — l , 2 , 0 , A 2 ) where < < 1 and

= (A 3+1, 1—A 3,2, 0, 2A 3, o , A 3) where A 2 A 3 < 1

Then Y
3dom (,27) y2 dom (34 .7 ) y’ dom (567 ) x.  Therefore y 3 

-~ x.

But x ~ y 3 . Hence by Proposition 9, x / P. Hence P = C = {c}.

(See Figure 7.)
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•

c = (2,0,2,0,2,0,1)

3

\
/ ‘~~\J~,2

L I 1’— .~ \l

I L2

p
1 

= (1,1,2,0,0,0,0) p3 (2,0,0,0,1,1,0)

p2 (0 ,0 ,1,1,2 ,0 ,0)

Figure 7. A 1-person non side payment game with no stable sets.
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